Analysis of propagation properties of electromagnetic waves through large planar plasma sheets

Author:

Xia Jun-Ming ,Xu Yue-Min ,Sun Yue-Qiang ,Huo Wen-Qing ,Sun Hai-Long ,Bai Wei-Hua ,Liu Cong-Liang ,Meng Xiang-Guang , ,

Abstract

Large planar plasma sheets, generated by a linear hollow cathode in pulse discharge mode under magnetic confinement, can be used in the field of plasma antenna, plasma stealth, and simulation of a plasma layer surrounding vehicles traveling at hypersonic velocities within the Earth's atmosphere. Firstly, to investigate the propagation properties of electromagnetic waves at different frequencies and polarization, the transverse field transfer matrix method is introduced. Secondly, the measured electron density temporal and spatial distribution and the transverse field transfer matrix method are utilized to calculate the reflection, transmission and absorption of electromagnetic waves by large planar plasma sheets with different currents. Finally, 1 GHz (less than the critical cut-off frequency) electromagnetic waves and 4 GHz (greater than the critical frequency) electromagnetic waves are chosen to investigate the evolution of propagation properties during the pulsed discharge period. Results show that both the reflection and absorption of the electromagnetic waves are greater for their polarization direction parallel to that of magnetic field, and their frequencies lower than the critical cut-off frequency, and as the discharge currents rise, the reflection increases while the absorption decreases. However both the reflection and absorption of the electromagnetic waves with their polarization direction perpendicular to the magnetic field direction and their frequency greater than the critical cut-off frequency become less, and as the discharge currents rise, both the reflection and absorption will increase. For the electromagnetic waves with their polarization direction perpendicular to the magnetic field direction, there is an upper hybrid resonance absorption band near the upper hybrid resonance frequencies, in which the absorption is significant but the absorption peak value is not affected by the discharge current. The propagation characteristics of the electromagnetic waves with polarization direction perpendicular to the magnetic field direction are the same as that of the electromagnetic waves with the polarization direction parallel to the magnetic field direction, except the upper hybrid resonance absorption. During the pulse discharge period, the propagation characteristic of the electromagnetic waves experiences an unstable phase before reaching steady states. The transition time is about 100 s and increases as the discharge current rises. The upper hybrid resonance absorption is significant during the phase of steady state for waves with frequency lower than the critical cut-off frequency and polarization direction parallel to the magnetic field direction. For the applications of a large planar plasma sheet to reflect electromagnetic waves effectively and steadily, the pulse discharge period should be larger than 100 s, and its discharge current should be large enough to make the critical cut-off frequency greater than the frequency of incident wave, and its polarization direction should be parallel to the magnetic field direction.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3