Author:
Gao Ying-Jun ,Quan Si-Long ,Deng Qian-Qian ,Luo Zhi-Rong ,Huang Chuang-Gao ,Lin Kui , ,
Abstract
Structural kinetics in crystalline solids is driven heterogeneously at an atomic level by localized defects, which in turn drive mesoscopic and macroscopic phenomena such as structural phase transformation, fracture, and other forms of plastic flows. A complete description of such processes therefore requires a multiscale approach. Existing modeling methods typically operate exclusively either on an atomic scale or on a mesoscopic scale and macroscopic scale. Phase-field-crystal model, on the other hand, provides a framework that combines atomic length scale and mesoacpoic/diffusive time scale, with the potential reaching a mesoacpoic length through systemic multiscale expansion method. In order to study the dislocation movement under shear strain, the free energy density functional including the exerting shear force term is constructed and also the phase field crystal model for system of shear stain is established. The climb and glide of single dislocation in two-grain system are simulated, and the glide velocity of dislocation and the Peierls potential for dislocation gliding are calculated. The results show that the energy curve changing with time are monotonically smooth under a greater shear strain rate, which corresponds to dislocation movement at a constant speed, which is of rigorous characteristic; while under less shear strain rate, the energy change curve of system presents a periodic wave feature and the dislocation movement in the style of periodic “jerky” for gliding with the stick-slip characteristic. There is a critical potential for dislocation starting movement. The Peierls potential wall for climbing movement is many times as high as that for gliding movement. The results in these simulations are in a good agreement with the experimental ones.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Reference43 articles.
1. Xu H J, Liu G X 2001 Fundamentals of Materials Science (Beijing: Beijing Industry Press) pp265-279 (in Chinese) [徐恒均, 刘国勋 2001材料科学基础 (北京: 北京工业出版社) 第265-279页]
2. Hu G X, Cai X 2010 Fundamentals of Materials Science (Shanghai: Shanghai Jiao Tong University Press) pp99-129 (in Chinese) [胡赓祥, 蔡珣 2010 材料科学基础(上海: 上海交通大学出版社) 第99-129页]
3. Bobylev S V, Ovid’ko I A 2003 Phys. Rev. B 67 132506
4. Ovidko I A, Skiba N V 2012 Scripta Mater. 67 13
5. Gukkin M Y, Ovidko I A 2001 Phys. Rev. B 63 064515
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献