Author:
Yan Ji ,Zhang Xing ,Zheng Jian-Hua ,Yuan Yong-Teng ,Kang Dong-Guo ,Ge Feng-Jun ,Chen Li ,Song Zi-Feng ,Yuan Zheng ,Jiang Wei ,Yu Bo ,Chen Bo-Lun ,Pu Yu-Dong ,Huang Tian-Xuan , ,
Abstract
The plastic DD filled capsule implosion experiment is performed on Shenguang III prototype laser facility. One-dimensional hydrodynamic numerical simulations show that the implosion compression ratio can be controlled by changing the capsule ablator thickness. In experiments, two types of capsules are studied and most of important implosion parameters are collected, such as neutron yield, X-ray bang-time, trajectory, and shape of hot core. The comparison between post-simulations and experimental results is performed. In our experiments, the neutron yield is 6.8×107 and YOC1D reaches 34% for low compression ratio implosion; the neutron yield is 6.3×106 and YOC1D is only 2.3% for middle compression ratio implosion. Meantime, the shape of hot core obtains an extra higher Legendre partial (P2 is 18% and P4 is 5%). On another side, the trajectory and bang-time are compared with simulations well.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Reference17 articles.
1. Lindl J 1995 Phys. Plasmas 2 3933
2. Lindl J D, Amendt P, Berger R L, Gail Glendinning S, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339
3. Atzeni S, Meyer-ter-vehn J (translated by Sheng B F) 2008 The Physics of Inertial Fusion (Beijing: Science Press) (in Chinese) [Atzeni S, Meyer-ter-vehn J 著 (沈百飞 译) 2008 惯性聚变物理 (北京: 科学出版社)]
4. Rygg J R, Jones O S, Field J E, Barrios M A, Benedetti L R, Collins G W, Eder D C, Edwards M J, Kline J L, Kroll J J, Landen O L, Ma T, Pak A, Peterson J L, Raman K, Town R P J, Bradley D K 2014 Phys. Rev. Lett. 112 195001
5. Town R P J, Bradley D K, Kritcher A, et al. 2014 Phys. Plasmas 21 056313
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献