Mesoscale simulation of the sedimentation of melting elliptical particle

Author:

Liu Han-Tao ,Jian Shan ,Wang Yan-Hua ,Wang Chan-Juan ,Li Hai-Qiao , ,

Abstract

In this paper, a mathematical relationship between particle melting rate and its surface heat flux is established to solve the problem of melting of elliptical particle sedimentation based on the direct numerical simulations of particle sedimentation when taking account of thermal convection within the framework of the arbitrary Lagrangian-Eulerian technique. The elliptical particle with different initial angles is released in a mesoscale channel under gravity. Compared with the isothermal elliptical particle sedimentation, the melting elliptical particle shows large differences in moving trajectories, the forces exerting on the particle and velocities, which come from the consideration of fluid convection, mass loss, and shape change. More specifically, 1) in the case of isothermal elliptical particle sedimentation, the velocity, the horizontal trajectory, and the force vary periodically. However, the amplitude recedes gradually, and finally becomes zero in the case of the melting elliptical particle, which is caused by the mass lost and shape change. 2) The equilibrium position of the major axis will finally be perpendicular to the direction of sedimentation. So, the initial angle of slope (θ) usually affects the sedimentation in the beginning, and vanishes after a period of time. 3) The downward convection induced by the cold fluid accelerates the velocity of the melting particle. The angular velocity, force and horizontal amplitude of the melting particle become smaller than those of the isothermal particle, and finally recedes to zero. In our study, the investigation of coupled heat transfer, fluid-solid system and shape change is carried out, and some new features are found out.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3