Effect of interface nucleation time of the GaN nucleation layer on the crystal quality of GaN film

Author:

Guo Rui-Hua ,Lu Tai-Ping ,Jia Zhi-Gang ,Shang Lin ,Zhang Hua ,Wang Rong ,Zhai Guang-Mei ,Xu Bing-She , ,

Abstract

In this paper, the influences of the growth time of low-temperature (LT) GaN nucleation layer on the crystal quality and optical properties of GaN film are investigated. It is found that the optimal LT nucleation layer growth time can effectively reduce the crystal defects and is favorable to forming the annihilation of dislocations. GaN films are grown on c-plane sapphire substrates by metal-organic chemical vapor deposition. Crystal quality and optical properties are characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), high-resolution X-ray diffraction (HRXRD), and photoluminescence spectra, respectively. In the AFM images, the island density decreases as growth time increases, while the size of island becomes larger and the uniformity of island size deteriorates as growth time increases, leading to the phenomenon that the number of interfaces formed during the nucleation island coalescence, first decrease and then increase as detected by SEM, which also induces the screw dislocation density and edge dislocation density to first decrease and then increase as measured by HRXRD. This first-decrease-and-then-increase variation trend is consistent with the first-increase-and-then-decrease variation trend of the ratio of the band edge emission peak intensity to the yellow luminescence peak intensity tested by photoluminescence, which is confirmed by HRXRD. It is shown that GaN islands with different sizes and densities could lead to different mechanisms of dislocation evolution, thereby forming GaN epitaxial layers with different dislocation densities and optical properties. Through controlling the nucleation time, GaN films with the smallest dislocation density could be obtained.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3