Relations among different energy dissipations of Euler disk

Author:

Zhu Pan-Cheng ,Bian Qing-Yong ,Li Jin-Bin , ,

Abstract

The energy dissipation of a disc spinning on a horizontal plane is studied, as the angle α of the coin made with the horizontal plane decreases, while the angular velocity Ω of the point of contact increases. Effect of the ratio x between the thickness and diameter of an Euler disc and the α on the energy dissipation is studied. We find, by using numerical simulation, that when x is small enough, the lose of the kinetic energy and the gravitational potential energy of the mass center is dominant in energy dissipations; when x>0.4142, the rotational kinetic energy dissipation of the disc around the axis that is parallel to the disc surface, is the leading factor. The requirements in which thickness can be neglected are also obtained, and they can give some hints to the relevant theories and experiments. Our results show that when α≥10° and b/a[26] data very well. We also discuss the main energy dissipation distributed among different forms: variation of rolling friction and viscous shear of the air with x and α, also show their transition in the process of the motion. Furthermore, we find that the pure rolling friction is the unique dissipation as x=0.1733 and α>18°, which improves the results obtained before. We speculate that the dominant dissipation is the gliding friction in the final stage of the motion, because when the disc is motionless, one face of the disc lies absolutely in contact with the horizontal surface just before the disc halts. One can assume that they are in contact completely but the disc does not halt, thus axis 1 and axis Z are almost in the same direction. In this case, the energy dissipation of the Euler disc is due to the gliding friction. To some extent, this accounts for the disc final halt.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference27 articles.

1. Zhang H J, Brogliato B 2011 INRIA Research Report 7580

2. Routh E J 1905 The Advanced Part of a Treatise on the Dynamics of Rigid Bodies, 6th ed (Cambridge: Cambridge University Press) pp196

3. Milne E A 1948 Vectorial Mechanics 338

4. Fowles G R, Cassiday G L 1999 Analytical Mechanics, 6th ed(Cambridge: Cambridge University Press) pp383

5. Olsson M G 1972 Am. J. Phys. 40 1543

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comments on ‘The abrupt ending of a spinning disk’;European Journal of Physics;2020-04-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3