Ordered detection of layered space-time signals based on the propagation delays of underwater acoustic channels

Author:

Zhang Xin ,Xing Xiao-Fei ,Zhang Xiao-Ji ,Zhou Yan-Qun ,Zhao Shun-De ,Li Jun-Wei ,

Abstract

The multiple-input multiple-output (MIMO) architecture with the layered space-time codes is a very promising solution for the high data rate underwater acoustic communications. The realization of this potential advantage, however, needs the essential layered space-time signal processing methods for canceling the interference resulting from the multipath propagation and the asynchronous arrivals of the sub-streams due to the different propagation delays, and the interference between the transmitted streams superposed in each receiving hydrophone. In this paper, the low-complex layered space-time signal detection scheme for the underwater acoustic communications is investigated. A propagation delay-based ordered successive interference cancellation (OSIC) algorithm is proposed at first. Sub-streams are sorted at the receiver according to the arrival orders resulting from the relative propagation delays inherent in the underwater acoustic channels from the transmitting transducers to the receiving hydrophones. The sub-stream with the first arrival is detected first. The proposed OSIC algorithm based on the "first-come first-go" principle has an advantage in the reduction of the interference from yet-to-be-detected sub-streams, therefore improving the detection performance at each step. The analysis manifests that the delay-based ordering is an optimal detection ordering to minimize the probability of overall block error for the asynchronous space multiplexing architectures. Then the ordering procedure is given which is performed by estimating the relative delays between the MIMO channels and requires only one ordering before the signal detection. This channel estimation-based method simplifies dramatically the ordering procedure and the calculations, therefore reducing substantially the calculation complexity of the layered signal detection. Finally, the single-carrier frequency domain equalization is employed to compensate for the multipath interference and the asynchronous arrival interference from the underwater acoustic propagation. Numerical results show that the performance gain can be obtained with the delay-based OSIC detection algorithm relative to the detection without ordering; moreover the gain increases substantially with the data rate. The investigation results demonstrates, on the other hand, that the inherent relative propagation delay in the underwater acoustic channels leading to asynchronous interference to the signal detection can be turned into an advantage to improve the performance with the efficient space-time signal processing algorithms.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference15 articles.

1. Zhang J, Zheng Y R 2010 J. Acoust. Soc. Am. 128 2910

2. Cho S E, Hee C S, Hodgkiss W S 2011 IEEE J. Ocean. Eng. 36 490

3. Zhang X, Sun X L, Zhang X J 2010 J. Northwestern Polytechnical University 28 192 (in Chinese) [张歆, 孙小亮, 张小蓟 2010 西北工业大学学报 28 192]

4. Reinhardt S, Buzid T, Huemer M 2006 PIMRC 2006- IEEE International Symposium on Personal, Indoor and Mobile Radio Communications Helsinki, Finland, September 11-14, 2006 p1

5. Shang Y, Xia X G 2009 IEEE Trans. Wireless Commun. 8 2860

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3