A new data assimilation method based on dual-number theory

Author:

Cao Xiao-Qun ,Huang Qun-Bo ,Liu Bai-Nian ,Zhu Meng-Bin ,Yu Yi , , ,

Abstract

In gradient computations of the variational data assimilation (VDA) by the adjoint method, in order to overcome a lot of shortcomings such as low accuracy, difficult implementation, and great complexity, etc., a novel data assimilation method is proposed based on the dual-number theory. The important advantages are that the coding of adjoint models and reverse integrations are not necessary any more, and the values of cost functional and its corresponding gradient vectors can be attained simultaneously only by one forward computation in dual-number space. Furthermore, the accuracy of gradient can be close to the computer machine precision without other error sources. The paper is organised as follows. Firstly, the dual-number theory and algorithm rules are introduced. Then, the issues of gradient analysis and computation in VDA are transformed into the processes of calculating the cost functional numerically in dual-number space, and the gradient vectors can be obtained at the same time in an easy, efficient and accurate way. Secondly, the new algorithm for data assimilation in nonlinear physical systems is developed by combining accurate gradient information from the dual-number method with classical optimization algorithm. Thirdly, numerical experiments on sensitivity analysis for an ENSO nonlinear air-sea coupled oscillator are implemented, and the results are presented to demonstrate the important advantages of the dual-number method in the calculation of derivative information. Finally, numerical simulations for data assimilation are carried out respectively for the typical Lorenz 63 chaotic systems, the specific humidity evolving equation with physical “on-off” process at a single grid point, and a parabolic partial differential equation. Some conclusions can be drawn from the numerical experiments. The newly proposed method may be suited to many kinds of optimization problems with ordinary or partial differential equations as constraints, such as data assimilation, parameter estimation, inverse problems, sensitivity analysis etc. Results show that the new method can reconstruct the initial conditions or parameters of a nonlinear dynamical system very conveniently and accurately. Its another advantage is being very easy to implement with a high accuracy in gradient computation, so it is robust in the process of numerical optimization. The estimated initial states or parameters are convergent to real value in the cost of no more computations, when there are noises in the observations. But many tests are still needed to demonstrate the validity and advantages of the new data assimilation method, especially in more complex and realistic numerical prediction models of atmosphere and ocean.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference29 articles.

1. Huang S X, Wu R S 2001 Mathematical Physics Problems in Atmosphere Science (Beijing: Meteorology Press) (in Chinese) p460 [黄思训、伍荣生 2001 大气科学中的数学物理问题(北京: 气象出版社) 第 460 页]

2. Zou X L 2009 Data Assimilation-Theory and Application (Vol. 1) (Beijing: Meteorology Press) p43 (in Chinese) [邹晓蕾 2009 资料同化-理论与应用(上册) (北京: 气象出版社) 第 43 页]

3. Evensen G 1994 J. Geophys. Res. 99 10143

4. Talagrand O, Courtier P 1987 Q. J. R. Meteorol. Soc 113 1311

5. Rabier, F., Jarvinen, H., Klinker, E. and Mahfouf, J. F 2000 Q. J. R. Meteorol. Soc. 126 1148

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3