Effects of electron incident angle on the secondary electron yield for polyimide

Author:

Weng Ming ,Hu Tian-Cun ,Cao Meng ,Xu Wei-Jun , ,

Abstract

Relationship between secondary electron yield (SEY) and electron incident angle has been measured for a polyimide sample. SEY as a function of incident angle at different incident electron energy is measured by use of a system with a single pulsed electron beam and a special surface charge neutralization technology based on the negatively biased collector. Measured results show that the SEY may deviate from the traditional law of monotonic increase with the incident angle when the angle is higher than a certain critical value. This deviation is even more obvious at lower incident electron energy. The critical incident angle decreases with decreasing incident energy. A theoretical analysis on the deviation is given in a simplified electron elastic scattering process. The distribution of the scattering region has an important effect on the relation of SEY versus incident angles. A sector region is introduced to describe the electron scattering region. Due to the limit of sample surface, the electron scattering region will decrease if the angle between the incident direction and the sample surface is smaller than half of the central angle of the sector. Corresponding SEY might no longer increase. Based on the Rutherford’s elastic scattering formula, a formula for the critical incident angle is derived as a function of incident electron energy, which is also confirmed by our measurement results. Finally, a revised SEY computation formula is developed which can give more accurate results at high incident electron angle.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference23 articles.

1. Liang T, Makita Y, Kimura S 2001 Polymer 42 4867

2. Zhang Q P, Wen L, Xiang W W, Zeng H J, He L W, Chu J R 2011 Chinese Journal of Vacuum Science and Technology 31 114 (in Chinese) [张秋萍, 文莉, 向伟玮, 曾洪江, 何利文, 褚家如 2011 真空科学与技术学报 31 114]

3. Fujii H, Okumura T, Takahashi M 2014 Electr. Eng. Jpn. 188 9

4. Molinie P, Dessante P, Hanna R, Paulmier T, Dirassen B, Belhaj M, Payan D, Balcon N 2012 IEEE Trans. Dielectr. Electr. Insul. 19 1215

5. Griseri V, Perrin C, Laurent C 2009 J. Electrost. 67 400

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3