Experimental study on a low switching energy and high-linearity all-optical sampler based on terahertz optical asymmetric demultiplexer

Author:

Jiang Lei ,Li Pu ,Zhang Jian-Zhong ,Sun Yuan-Yuan ,Hu Bing ,Wang Yun-Cai , ,

Abstract

We demonstrate experimentally a low switching energy and high-linearity all-optical sampler based on terahertz optical asymmetric demultiplexer (TOAD) composed of a nonlinear semiconductor optical amplifier (SOA) with a multiple quantum well structure. Effects of the sampling pulse power and asymmetric offset of SOA on the shape, width and amplitude of sampling windows are analyzed in detail respectively. It is found that the sampling pulse power has no effect on both the shape and the width of sampling windows, but has a significant effect on the window amplitude. Meanwhile there exists an optimal power which maximizes the sampled output and determines the switching energy of TOAD. The asymmetric offset of SOA from the center position in the loop determines the width of sampling windows and has great influences on both the shape and the amplitude of the sampling window. The sampling windows with different widths have approximately the same rise edge due to the fast response of SOA for the sampling pulse. However, the normalized amplitude of sampling windows firstly increases sharply with the increase of the asymmetry, then gradually flattens out, and tends to be stable in the end. In addition, the switching energy and linearity of TOAD are studied. The switching energy is as low as 25 fJ, and the linearity is as high as 0.99. Moreover, at different window widths, the switching energy of TOAD remains the same and the sampling windows have a very good linearity. However, the sensitivity of a TOAD sampler with different width is different: the wider the sampling window, the higher the sensitivity and the larger the corresponding dynamic range.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3