Study of precondition for simulating low-speed turbulence

Author:

Chen Yong ,Guo Long-De ,Peng Qiang ,Chen Zhi-Qiang ,Liu Wei-Hong ,

Abstract

Precondition for simulating low-speed turbulence is studied in this paper. Against the stiffness of the time-dependent scheme applied to low-speed turbulence, the precondition based on conservative variables is developed, which adopts an implicit iterative method for solving main control equations coupled with turbulence transport equations. In order to ensure the iterative solution stable, a reference Mach number, the dual-time stepping no-matrix scheme, and the method for processing implicitly the source terms of turbulence equations etc. have been developed reasonably, making the software platform unified for all-speed turbulence. Reference Mach number is defined in terms of global and local velocity by a single parameter, and the parameter can be used to control stability, numerical result accuracy, and switch of the precondition. The dual-time stepping LU-SGS method based on conservative variable precondition is developed, realizing no-matrix iterative solution for unsteady flow problems. Against the stiffness in solving the main control equations coupled with turbulence transport equations, the dissipation term of the turbulence equations is processed implicitly, which can enhance main diagonal dominance of the turbulence equations and make the iteration with greater stability. In simulating the turbulence in a nozzle and around a square cylinder or an airfoil, the precondition depicts correctly the structural character of the flowfield; and the computational results are in good agreement with those of theory and experiment etc., and its iterative convergence and numerical accuracy is excellent. It is shown that the precondition in this paper for low-speed turbulence is very effective.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3