Time-optimized quantum QFT gate in an Ising coupling system

Author:

Ling Hong-Sheng ,Tian Jia-Xin ,Zhou Shu-Na ,Wei Da-Xiu ,

Abstract

Quantum Fourier transform (QFT) is a quantum analogue of the classical discrete Fourier transform. It is a fundamental quantum gate in quantum algorithms which has an exponential advantage over the classical computation and has been excessively studied. Normally, an n-qubit quantum Fourier transform could be resolved into the tensor product of n single-qubit operations, and each operation could be implemented by a Hadamard gate and a controlled phase gate. Then the complexity of an n-qubit QFT is of order O(n2). To reduce the complexity of quantum operations, optimal control (OC) method has recently been used successfully to find the minimum time for implementing a quantum operation. Up to now, two types of quantum optimal control methods have been presented, i.e. analytical and numerical methods. The analytical approach is to change the problem of efficient synthesis of unitary transformations into the geometrical one of finding the shortest paths. Numerical optimal control procedures are based on the gradient methods (GRAPE, Gradient Ascent Pulse Engineering) and Krotov methods. Notable application mainly focus on nuclear magnetic resonance fields, including imaging, liquid-state NMR, solid-state NMR, and NMR quantum computation. One obvious advantage of optimal control NMR quantum computation is that the OC unitary evolution transformation pulse sequences are normally shorter than the conventional corresponding ones. Here we use the optimal control method to find the minimum duration for implementing QFT quantum gate. A linear spin chain with nearest-neighbor Ising interaction is used to find the optimization. And the optimized pulse sequence is experimentally demonstrated on an NMR quantum information processor. By using optimal control method with numerical calculation, a three-qubit QFT in an indirect-linear-coupling chain system is optimized. The duration of the OC QFT is obviously shorter than that of conventional approaches. The OC pulse sequence has been experimentally implemented on a liquid-state NMR spectrometer. To verify the optimally controlled pulse sequence for the three-qubit QFT, different initial states are assumed. The accuracy of the OC pulse sequence could be demonstrated by the consistency of theoretical simulation spectra with the experimental results. The good consistency between the simulation and the experimental spectra demonstrates that the OC QFT is of high fidelity.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference28 articles.

1. Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)

2. Long G L 2010 Physics 39 0

3. Fu X Q, Bao W S, Li F D, Zhang Y C 2014 Chin. Phys. B 23 020306

4. Weinstein Y S, Pravia M A, Fortunato E M, Lloyd S, Cory D G 2001 Phys. Rev. Lett. 86 1889

5. Shor P 1994 Algorithms for quantum computation: discrete logarithms and factoring. Proc. 35th Ann. Symp. on Found. Of Comp. Sci. (IEEE Comp. Soc. Press) pp124-134

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3