Author:
Yan Pei-Pei ,Ma Cai-Wen ,She Wen-Ji , ,
Abstract
The space-based surveillance, which would mainly use the space-based visible, has great value for civil and military applications currently and for a fairly long future period. In space-based surveillance, the visible and near-infrared radiation characteristics of the space target are influenced by its attitude variation. This influence is especially prominent in space-based imaging. In some ways, solar radiation cannot arrive at the surface of the space target, or the arriving radiation is not uniformly distributed because of the space target's strong reflection at a particular position. In order to solve these problems, the visible and near-infrared illumination characteristics of the space target surface are analyzed. Moreover, a notion that earth's reflective radiation can be used as illumination for space target imaging is given, and an accurate modeling method is proposed. Firstly, based on diffuse reflectance model, a method of mathematically calculating the illumination at space target's position from earth's reflective radiation is established. And a formula for calculating illumination is derived. Secondly, the coordinates of sun and space target at any time can be obtained by the Satellite tool kit software, in which the complicated multiplying matrix and coordinate transformation algorithm introduced in some references are avoided. Thirdly, the method of estimating earth's reflective radiation region at arbitrary moment is introduced. The grid division method is generated and the uniform sampling is used in each small area. Fourthly, the position of a surface cell is transformed from the sphere reference frame into the J2000.0 inertial frame. The earth's reflective radiation can be calculated through numerical integration. Finally, the illumination from earth's reflective radiation to a sun synchronous orbit satellite in an imaging mission based on space is calculated by the given parameters. The results show that the earth's reflective radiation is luminous enough for space target imaging when the satellite passes through arctic. When the satellite moves on the orbit, we can obtain more detailed information about target satellites' bottom then the ground simulation imaging. The on-orbit imaging results demonstrate the validity of the modeling method, which could support the foundation of our space-based surveillance system theoretically and technically and could be used as a reference of space-based orbit measurement and determination in deep space exploration.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Reference28 articles.
1. Niu Z G, Yu X H 2006 J. Acad. Equip. Comm. Technol. 17 38 (in Chinese) [牛子刚, 于小红 2006 装备指挥技术学院学报 17 38]
2. Zeng D X, Du X P 2008 J. Syst. Simul. 20 209 (in Chinese) [曾德贤, 杜小平 2008 系统仿真学报 20 209]
3. Sun C M, Yuan Y, Zhang X B 2010 Acta Phys. Sin. 59 7523 (in Chinese) [孙成明, 袁艳, 张修宝 2010 物理学报 59 7523]
4. Yuan Y, Sun C M, Huang F Z, Zhao H J, Wang Q 2011 Acta Phys. Sin. 60 089501 (in Chinese) [袁艳, 孙成明, 黄锋振, 赵慧洁, 王潜 2011 物理学报 60 089501]
5. Xia X L, Ai Q, Ren D P 2007 J. Infrared Millim. Waves. 26 174 (in Chinese) [夏新林, 艾青, 任德鹏 2007 红外与毫米波学报 26 174]
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献