Characteristics and parameter optimization of electron beam radiography

Author:

Chen Yuan ,Wang Xiao-Fang ,Shao Guang-Chao ,

Abstract

The electron beam produced by an ultra-short, high-intensity laser pulse is of properties of small source size, short duration, and quasi-monoenergetic energy, and will play a unique role in radiographic diagnostics. By analyzing the scattering processes of electrons in materials and performing Monte-Carlo simulations, electron radiography for probing target surface non-uniformities or material interfaces is studied for electron energy ranging from 100 keV to several hundreds of MeV, and the results are compared with those of proton radiography and X-ray radiography, respectively. Features and parameter optimization of electron radiography are obtained, and some applications are suggested. By taking advantage of inelastic scattering or energy loss of charged particles, target surface nonuniformities could be diagnosed by a charged-particle beam whose range is close to the target thickness. Such a diagnosis would produce a higher detection contrast than that by absorption-type X-ray radiography. For a proton beam, a target thickness variation as small as 0.1% could be detected due to a more evident Bragg peak of the stopping power near its range. Nevertheless, the energy of laser-accelerated proton beams being up to 100 MeV would limit the applications. For an electron beam, since a thickness variation of 0.3% could be detected, its energy over 1 GeV has been realized by laser acceleration, the electron radiography could be extended to diagnose thicker targets. When using an electron beam to radiograph a thin or a foil target, for example, of thickness on the order of 100 μm, a spatial resolution of 11 μm or better could be achieved due to the reduced elastic scattering and angular deflection. By taking advantage of elastic scattering of electrons, an electron beam whose range is much greater than the target thickness could be used to diagnose a target interface composed of different materials or even a multilayered capsule, and a higher contrast of the electron fluence modulation at interfaces would be realized than that by absorption-type X-ray radiography, which is caused by stronger scattering of electrons as the electron scattering cross section is several orders of magnitude greater than that of X-ray scattering such as the Thomson scattering. As a laser-produced electron beam is prone to have an ultrafast pulse duration of 100’s of femtoseconds or less, it is anticipated that the electron radiography will produce an ultrasfast temporal resolution. These results and conclusions would be helpful to the applications and parameter optimization of electron radiography.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3