ZnO:Al textured films for improved performance in organic photovoltaics

Author:

Zhang Ke ,Hu Zi-Yang ,Huang Li-Ke ,Xu Jie ,Zhang Jing ,Zhu Yue-Jin ,

Abstract

A major issue in organic photovoltaics (OPVs) is the poor mobility and recombination of the photogenerated charge carriers. The active layer has to be kept thin to facilitate charge transport and minimize recombination losses. However, optical losses due to inefficient light absorption in the thin active layers can be considerable in OPVs. Therefore, light trapping schemes are critically important for efficient OPVs. In this paper, high efficient OPVs are demonstrated by introducing randomly nanostructured front electrodes, which are fabricated using commercially available ZnO:Al (AZO) films by means of a wet etching method. The etched AZO front electrode induces strong diffusion and scattering of the incident light, leading to the efficient light trapping within the device and enhancement of light absorption in the active layer. Such a nanostructured electrode can achieve an improved device performance by maintaining simultaneously high open-circuit voltage and fill factor values, while providing excellent short-circuit current enhancement through efficient light trapping. The best device obtained based on the textured electrode shows a 11.29% improvement in short current density and a 8.17% improvement in power conversion efficiency, as compared with the device with a flat electrode. The improvement in PCE is directly correlated with the enhancement of light absorption in the active layer due to the light scattering and trapping effect induced by the randomly nanotextured electrodes, which is confirmed by a haze factor measurement and an external quantum efficiency characterization. The well-established contact interfaces between the etched electrodes and active layers are made, and thus reduce the impact on the open-circuit voltage and fill factor values in OPVs. We thus conclude that the method of light manipulation developed in this paper will provide a promising and practical approach to fabricate high-performance and low-cost OPVs.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3