Suppression of secondary electron multipactor on dielectric surface in TM mode

Author:

Li Shuang ,Chang Chao ,Wang Jian-Guo ,Liu Yan-Sheng ,Zhu Meng ,Guo Le-Tian ,Xie Jia-Ling , , ,

Abstract

To suppress the secondary electron multipactor on dielectric surfaces of a dielectric load accelerator under an electromagnetic field in TM mode, the method of adopting both groove structure and external axial magnetic field is introduced. As the electric field distribution of the TM mode is composed of both normal and tangential components, it is different from that under the condition of dielectric window in HPM. Thus, theoretical analysis and numerical simulation are employed to study the movement of electrons under different conditions: such as dielectric surface shapes, electric field strength, and magnetic field strength etc. Based on the particle-in-cell (PIC) simulation, the collision energy and transmit-duration of secondary electrons in different groove structures and axial magnetic fields are compared with one another. Results show that the magnetic field is useful for suppressing the development of secondary electron on dielectric surface, while it is not very efficient under high electric field strength. The method of introducing groove structure and certain axial magnetic field on dielectric surface at the same time is capable of affecting the movement of electrons in electric field of different strength. So it is great helpful in improving the ability of multipactor suppression, which is significant for improving the threshold of breakdown on dielectric surface and the power of cavity. However, a too high or too low magnetic field is not very useful for the suppression of multipactor. Furthermore, employing only one of the two parts of the method is also less effective in suppressing the multipactor.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3