Spatial correlation experimental analysis of atmospheric optical turbulence in the near ground layer

Author:

Wang Qian ,Mei Hai-Ping ,Qian Xian-Mei ,Rao Rui-Zhong , ,

Abstract

Atmospheric optical turbulence means refractive index random fluctuation of atmosphere. In this article, according to the concept of correlation function, the measurement principle, measurement schemes, and data processing method of spatial correlation function are given based on a high-quality fiber optical turbulence sensing array. Determining the statistical time and the calculation principle of the spatial correlation is the main point of current research. Emphasis is put on demonstrating the kinds of structural forms and analyzing the impact elements of spatial correlation function in turbulence as clear as possible. Using the sensing array, experimental measurement is promoted in the near ground layer and many forms of correlation functions are revealed. Results show that there are two main structural forms of the spatial correlation function:the first one shows an isotropy-model form, which tends to decrease with the increase of spatial displacement, and then tends to zero after outer scale, the coincidence rate is about 58.7%. The other one tends to oscillate around zero, and the coincidence rate is about 37.9%. By analyzing the probability and impact elements, it is not difficult to know that the spatial correlation of an optical turbulence mainly depends on the intensity and development degree of the optical turbulence; and the coherent structure is an important factor of oscillation in the correlation functions. On the one hand, the value of correlation coefficient is mainly determined by the intensity of the optical turbulence; and on a certain scale, the stronger the turbulence, the bigger the value of correlation coefficient becomes. On the other hand, the variation tendency of correlation function is not only determined by the intensity of turbulence, but also by the development degree of the optical turbulence. When the atmosphere is in advection or anisotropy, its spatial correlation coefficient will oscillate around zero and be unrelated to the spatial displacement. The spatial correlation function obtained by the sensor array set is not only the foundation of analyzing the spatial structure, but also the beginning of giving non-Kolmogorov model of turbulence.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference26 articles.

1. Rao R Z 2012 Modern Atmospheric Optics (Beijing:Science Press) p155-159 (in Chinese) [饶瑞中 2012 现代大气光学(北京:科学出版社)第155-159页]

2. Cui L Y, Xue B D, Cao X G, Zhou F G 2014 J. Opt. Soc. Am. A 31 829

3. Reinhardt C N, Tsintikidis D, Hammel S, Kuga Y, Ritcey J A, Ishimaru A 2012 Opt. Eng. 51 031205

4. Wu X Q, Wang Y J, Zeng Z Y, Gong Z B 2002 High Power Laser and Particle Beams 14233 (in Chinese) [吴晓庆, 王英俭, 曾宗泳, 龚知本 2002 强激光与粒子束 14233]

5. Wu X Q, Huang Y B, Mei H P, Shao S Y, Huang H H, Qian X M, Cui C L 2014 Acta Opt. Sin. 34 0601001 (in Chinese) [吴晓庆, 黄印博, 梅海平, 邵士勇, 黄宏华, 钱仙妹, 崔朝龙 2014 光学学报 34 0601001]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3