Acoustic charge transport behaviors of sulfur-doped wide gap Ga2Te3-based semiconductors

Author:

Liu Hai-Yun ,Liu Xiang-Lian ,Tian Ding-Qi ,Du Zheng-Liang ,Cui Jiao-Lin , ,

Abstract

Wide gap semiconductors as the thermoelectric (TE) candidates have been increasingly interested because of their inherent high Seebeck coefficients and low thermal conductivities. Ga2Te3 is one of the typical defect compounds (Eg=1.65 eV) among the A2IIIB3VI type semiconductors, in which there are periodically self-assembled 2D vacancy planes that wrap the nanostructured domains. The vacancy planes scatter phonons highly effectively and are responsible for reducing the lattice thermal conductivity. Hence Ga2Te3 might be a good TE candidate. In the phase diagram of Ga-Te, Ga2Te3 is involved in the eutectoid and peritectic reactions at the critical temperatures (CTs) of 680 10 K and 757 10 K respectively. These reactions would lead to the generation of enthalpies of reactions, and induce the alteration of some thermo-physical properties. In the present work, we have not observed the phase transformations at CTs in the Ga2Te3-based materials with sulfur isoelectronic substitution for Te, which are prepared by powder metallurgy with the spark plasma sintering (SPS) technique, but can observe the generation of assumed enthalpies of reactions near CTs, which directly gives rise to the critical acoustic charge transport behaviors. The critical behaviors involve the remarkable increase of heat capacities and Seebeck coefficients and, at the same time, reductions of thermal diffusivities (thermal conductivities) and electrical conductivities. For example, the Seebeck coefficient () at x=0.05 increases rapidly from 376.3(VK-1) to 608.2(VK-1) when the temperature rises from 596 to 695 K, and then decreases to 213.8(VK-1) at 764 K. Similarly, all the S-doped samples, which have lowest electrical conductivities ( ) of 2.12102 (x=0.05), 0.25102 (x=0.1), 0.12102 -1m-1 (x=0.2) and 0.14102 -1m-1 (x=0.3) at 696725 K, undergo dramatic changes when the temperature rises to about 750 K, and then the electrical conductivities begin to decrease, and the changes tend to slow down. It is notable that both the Seebeck coefficients and electrical conductivities exhibit a typical zigzag temperature dependence in the temperature range from 596 to 812 K. These behaviors reveal the remarkable alterations in scattering mechanism of both phonons and carriers at temperatures near the CTs. Although the materials with these critical behaviors near CTs do not have satisfactory thermoelectric performance (ZTmax=0.17 at 793 K for x=0.3) as compared with the known binary Cu2Se, Ag2Se(S) or ternary based AgCrSe2 alloys, however, the findings of such critical transport behaviors have a great significance for future researches.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3