Dispersion properties of plasma-filled metallic photonic crystal slow-wave structure

Author:

Fu Tao ,Yang Zi-Qiang ,Ouyang Zheng-Biao , ,

Abstract

Plasma-filled slow-wave devices provide a new way to develop high efficiency and high power vacuum-electron microwave sources, but their theoretical analysis and simulation is difficult. This paper introduces the wheel spoke antenna to excite signals for analyzing the dispersion characteristics of resonant cavity with plasma-filled metallic photonic crystal slow-wave structure (SWS). Influences of parameters of the SWS and plasma density on dispersion characteristics of the SWS are studied. Results show that there is little difference in dispersion characteristics obtained by wheel spoke antenna excitation of signals and other methods without plasma filling. When plasma fills in the SWS, the frequency of zero mode is consistent with the previous results obtained by other methods. Hence, both the results with and without plasma filling demonstrate that the wheel spoke antenna signal-excitation method is effective. Moreover, decreasing the thickness of wheel spoke antenna properly and the distance between the antenna and reflection surface of the metal plate can reduce the wheel spoke antenna influence on the cavity resonance frequency. Furthermore, thicker antenna can excite the slow wave field easily, while thinner antenna can excite the resonant mode easily. Besides, the outer radius and thickness of the SWS plate have little influence on the dispersion characteristics, while the period length and the inner radius of the SWS plate have greater influence on the dispersion characteristics. In addition, the dispersion curves of frequency and phase velocity will move to higher frequency regions with the increase of plasma density. Further, the influence of plasma filling on low-order modes is greater than that on higher order modes. It is also found that the higher-order mode operation can reduce the size of cavity and the velocity of the electron beam.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3