Electronic Tamm states of metamaterial-like semiconductor composite structures

Author:

Wu Zhi-Zheng ,Yu Kun ,Guo Zhi-Wei ,Li Yun-Hui ,Jiang Hai-Tao ,

Abstract

In a semi-infinite crystal, the periodic potential is destroyed at the surface, and the electronic wave functions exponentially decay from the surface to both sides. Such localized electronic states in the vicinity of the surface are known as Tamm surface states. In analogy to the electronic Tamm states, in recent years, optical Tamm states have been found at the surface of the truncated photonic crystal composed of two kinds of dielectrics. Very recently, novel types of optical Tamm states including backward Tamm states in which the phase velocity and the group velocity of optical waves are in the opposite direction have been discovered in the photonic structures containing metamaterials. In fact, the concepts in electronic field and photonic field can inspire each other. Many unique phenomena in photonic systems can also be mapped to the electronic systems. In this paper, we study the novel types of electronic Tamm states in electronic systems, inspired by the novel types of optical Tamm states in photonic structures. #br#At first, comparing Maxwell equations with Schrodinger equations, one can see a correspondence between the parameters in electromagnetic system and the parameters in the electronic system. In particular, Hg1-xCdxTe semiconductors with special electronic band structures can realize various electronic materials in analogy to the optical metamaterials with various values of permittivity and permeability. By tuning the parameter x of Hg1-xCdxTe, we obtain a variety of metamaterial-like electronic materials, in analogy to the single-negative metamaterials, the double-negative metamaterials and the near-zero-index metamaterials in optical systems. Then, inspired by the one-dimensional heterostructures with metamaterials that generate optical Tamm states, we design a one-dimensional electronic heterostructure consisting of Hg0.847Cd0.153Te and CdTe/HgTe superlattice. When Hg0.847Cd0.153Te is analogous to the double-negative metamaterial, we find the backward electronic Tamm states in which the phase velocity and the group velocity of electronic waves are in the opposite directions. When Hg0.847Cd0.153Te is analogous to the near-zero-index metamaterial, we find a novel electronic Tamm states in which the amplitude of the electronic probability decays very slowly in Hg0.847Cd0.153Te. The discovery of these new types of electronic Tamm states enlarges our knowledge of electronic surface states.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3