Simulation of localized surface plasmon resonance of hexagonal Ag nanoarrays and amorphous oxidized silicon nitride

Author:

Zhang Wen-Ping ,Ma Zhong-Yuan ,Xu Jun ,Xu Ling ,Li Wei ,Chen Kun-Ji ,Huang Xin-Fan ,Feng Duan , , ,

Abstract

Simulation on the properties of localized surface plasmon resonance (LSPR) of different sized hexagonal Ag nanoarrays embedded in the amorphous oxidized silicon nitride(a-SiNx:O) matrix has been carried out by using COMSOL Multiphysics and FDTD Solution simulation software. Through the calculation of the scattering and absorption cross section of Ag array with different radius, we find that the position of extinction peaks red-shift from 460 to 630 nm when the radius of nanoparticles of hexagonal Ag arrays increases from 25 to 100 nm with the distance between particles 100 nm. The enhanced scattering cross section of the localized surface plasmon (LSP) and blue-shift of the extinction peak can be obtained by tunning the distance between Ag nanoparticles from 100 to 50 nm with the radius of Ag nanoparticles fixed at 50 and 75 nm, respectively. However the mismatch between the extinction peak of hexagonal Ag nanoarrays and the blue light emission of 460 nm from a-SiNx:O films still exists. The novel overlap between the scattering cross section of LSP from hexagonal Ag arrays with a radius of 25 nm and the blue light emission of a-SiNx:O films at 460 nm further confirms that the hexagnoal Ag arrays with a radius of 25 nm is the optimal option to enhance the blue light emission from a-SiNx:O films. Therefore, strong coupling between LSP and blue light emission at 460 nm from a-SiNx:O films with a thickness of 70 nm can be realized when the radius of Ag nanoparticle is 25 nm. We also investigate the enhancement of near field radiative intensity of LSP from hexagnoal Ag arrays with a radius of 25 nm. When the excitation wavelength is 460 nm, the maximum enhancement of near field intensity of LSP from hexagnoal Ag arrays with a radius of 25 nm reaches 1.46104 V/m. The calculated polarization intensity and charge distribution of hexagonal Ag nanoparticle with a radius of 25 nm embedded in a-SiNx:O films reveal that the enhancement of electromagnetic field-intensity is through the dipolar plasmon coupling with the excitons in a-SiNx:O films in bright field mode under the excitation of 460 nm. Further calculation of perpendicular radiative intensity for LSP from the hexagonal Ag array with a radius of 25 nm embedded in a-SiNx:O films indicates that the maximum radiative intensity can be realized in a-SiNx:O matrix with an optimum thickness of 30 nm for a-SiNx:O films. Our theoretical calculations and analysis can provide valuable reference for the design of Si-base blue LED with light emission around 460 nm.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3