Holographic display based on liquid crystal spatial light modulator

Author:

Xia Jun ,Chang Chen-Liang ,Lei Wei ,

Abstract

In conventional phase-only holographic display, the phase-only computer generated hologram is usually calculated based on the fast Fourier transform (FFT) algorithm, in which the Nyquist theory should be satisfied. However, due to the pixel structure of the liquid crystal spatial light modulator and a fixed spatial sampling rate, the size of the reconstructed image is limited by the space-bandwidth product of the liquid crystal phase modulator. The traditional solution is to use convolution algorithm or double-step Fresnel diffraction algorithm to calculate the Fresnel hologram, but FFT has to be calculated many times in both of the methods, thereby increasing the burden of hologram computation. Therefore, in this paper we propose a method to calculate the phase-only hologram based on setting a virtual hologram plane. This virtual hologram plane is set based on the principle of lens imaging. So the calculation of the hologram can be divided into two steps: the first step is to calculate the Fresnel diffraction from the object plane to the virtual hologram plane, and the second step is to calculate the hologram from the virtual hologram plane by being multiplied with a quadratic phase term. In this way, the hologram can be calculated from the original object with any sampling rate we need by adjusting the corresponding parameters of distance. By this method one can calculate the Fresnel diffraction between hologram plane and object plane with variable sampling rates, without considering the space-bandwidth product of the liquid crystal phase modulator, and this algorithm uses only one FFT calculation, which can speed up the calculation of hologram compared with the convolution based method (using three FFTs in calculation) and the double-step Fresnel method (using two FFTs in calculation). Both the computer simulation and the optical experiments demonstrate that the object can be reconstructed with different sizes in the holographic display system. In the optical experiment, the zero-order diffraction can be removed by placing a filter on the back focal plane of the imaging lens and the speckle noise can also be eliminated in order to improve the reconstruction quality by displaying multiple phase-only holograms at a high speed. The proposed method in this paper shows a potential application in zoom-able liquid crystal spatial light modulator based holographic display system.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3