Shock-induced phase transition of z-cut lithium tantalate single crystal

Author:

Li Jun ,Zhou Xian-Ming ,Li Jia-Bo ,Li Sai-Nan ,Zhu Wen-Jun ,Wang Xiang ,Jing Fu-Qian ,

Abstract

High-pressure phase-transition behaviors of z-cut lithium tantalate single-crystal have been studied by Hugoniot measurements at our two-stage light-gas gun and DFT-PWP calculations. A distinct discontinuity was discovered on the D-u (shock-wave velocity versus particle velocity) relation. An elastic-plastic two-wave structure was observed from the VISAR measured particle velocity profiles at low pressures (25.9 GPa and 32.6 GPa), while three-wave structure appeared in the measured particle velocity profiles at the final pressure of 42.9 GPa and 53.0 GPa. Both facts indicate a shock-induced phase transition of LiTaO3 samples occurred with an onset pressure of 37.9GPa. The theoretically calculated 0K pressure versus compression ratio (P-V/V0) curve for the rhombohedral phase (R3c space group) is in good agreement with the low-pressure experimental data, while that for orthorhombic phase (Pbnm space group) is in accord with the results by deducing thermal pressure contribution from the measured shock-compression data at high pressures. This suggests that the high-pressure phase has orthorhombic symmetry. High-pressure phase transformation behaviors including the transition pressure and structures, which are unclear in current literature, have been clarified in this paper by our new shock-wave data and ab-initio calculations. These behaviors were demonstrated to be in close similarity with that of its isomorphous crystal LiNbO3. The present work is significant for the investigations of shock-induced phase-transition of similar single-crystal materials.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3