Low light level image target detection based on texture saliency

Author:

Jin Zuo-Lun ,Han Jing ,Zhang Yi ,Bai Lian-Fa ,

Abstract

Owing to its low contrast, the target of low light level (LLL) image is not very salient, and it is difficult to detect automatically. Aimed at this problem, this paper proposes a noise robustness algorithm for computing the local texture coarseness (LTC) of textured images, and provides a texture saliency (TS) calculation method that is applicable to saliency analysis of LLL image. Firstly, we present a novel LTC algorithm, by which the LTC around a pixel using the best size of the pixel. Compared with coarseness measure based on local fractal dimension, the LTC algorithm shows much better noise robustness in the experiments of noised textured images. Then, a TS algorithm is given based on the extraction of texture coarseness feature map. Finally, we apply the TS algorithm to LLL image target detection, which is efficient proved by experimental results.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference26 articles.

1. Zhang C, Bai L F, Zhang Y 2007 Acta Phys. Sin. 56 3227 (in Chinese) [张闯, 柏连发, 张毅 2007 物理学报 56 3227]

2. Wang L P, Sun S Y, Chen Q, Zhang B M 2000 Infrared Millim. Waves 19 289 (in Chinese) [王利平, 孙韶远, 陈钱, 张保民 2000 红外与毫米波学报 19 289]

3. Li Z, Itti L 2011 IEEE Trans. Image Process. 20 2017

4. Xu Y N, Zhao Y, Liu L P, Zhang Y, Sun X D 2010 Acta Phys. Sin. 59 980 (in Chinese) [许元男, 赵远, 刘丽萍, 张宇, 孙秀冬 2010 物理学报 59 980]

5. Walther D, Koch C 2006 Neural Networks 19 1395

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3