Author:
Meng Guang-Hui ,Lin Xin , ,
Abstract
The lamellar spacing, which is formed by solidified melt of eutectic or near-eutectic composition, plays a very important role in determining the properties of final products. In this study, the lamellar spacing of eutectic growth in steady-state is predicted by the method which is established based on the classical Jackson-Hunt theory, and completed by considering the free energy change during eutectic solidification at small undercooling. The density difference between the solid phases is also considered when calculating the diffusion field in the liquid. It is found that a band of lamellar spacings would be generally selected for a given alloy under fixed growth conditions. In addition, the lamellar spacing can be morphologically stable below the minimum undercooling value, and this overstabilization is only dependent on the intrinsic characteristic properties of a given system at a fixed growth velocity. The analysis results are found to be in reasonable agreement with experimental data of Al-Al2Cu, Sn-Pb and CBr4-C2Cl6 systems available from the literature.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Reference35 articles.
1. Pusztai T, Rátkai L, Szállás A, Gránásy L 2013 Phys. Rev. E 87 032401
2. Clopet C R, Cochrane R F, Mullins A M 2013 Appl. Phys. Lett. 102 031906
3. Bai B B, Lin X, Wang L L, Wang X B, Wang M, Huang W D 2013 Acta Phys. Sin. 62 218103 (in Chinese) [白贝贝, 林鑫, 王理林, 王贤斌, 王猛, 黄卫东 2013 物理学报 62 218103]
4. Wang L, Wang N, Ji L, Yao W J 2013 Acta Phys. Sin. 62 216801 (in Chinese) [王雷, 王楠, 冀林, 姚文静 2013 物理学报 62 216801]
5. Liu J M, Liu Z G, Wu Z C 1993 Chin. Phys. 2 782
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献