Particle-in-cell simulation on effect of outgassing on flashover and breakdown on dielectric surface in high-power microwave environment

Author:

Dong Ye ,Dong Zhi-Wei ,Zhou Qian-Hong ,Yang Wen-Yuan ,Zhou Hai-Jing ,

Abstract

For investigating the mechanism of high power microwave flashover and breakdown on dielectric surface with outgassing, firstly, the theoretical modeling is put forward, including dynamic equations, particle-in-cell (PIC) method, secondary emission, Monte-Carlo collision (MCC) method and outgassing model. Secondly, based on the theoretical modeling, the 1D3V PIC-MCC code is programmed by authors. By using this code, the flashover and breakdown on dielectric surface with weak and strong outgassing course under different gas moving velocities are studied numerically. The numerical results are concluded in the following. The flashover and breakdown on dielectric surface are caused by continuous increase of deposited power. For weak outgassing, multipacting is dominant. As outgassing coefficient increases, multipacting is promoted by ionization collision. The typical phenomena are the increases of space-charge field, average energy of surface-collision electrons and the number of surface-collision electrons. Here, the surface-collision electrons are caused by multipacting mostly. With the increase of gas molecule velocity, ionization course is suppressed by gas pressure decreasing near to the dielectric surface. For strong outgassing, ionization collision is dominant. As outgassing coefficient increases, the number of ions increases exponentially with ionization frequency increasing, multipacting is suppressed by ionization collision. The typical phenomena are the negative value of space-charge field on dielectric surface, the decrease of average energy of surface-collision electrons, and the exponential increase of surface-collision electrons caused by ionization collision near to dielectric surface. Here, the surface-collision electrons are caused by ionization mostly. With the increase of gas molecule velocity, the depth of gas is enlarged, thereby promoting the ionization collision.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3