Author:
Lei Tian-Min ,Wu Sheng-Bao ,Zhang Yu-Ming ,Guo Hui ,Chen De-Lin ,Zhang Zhi-Yong , , ,
Abstract
To study the effect of rare earth element doping on the electronic structure of monolayer MoS2, the lattice parameters, band structures, density of states, and electron density differences of La, Ce and Nd doped and intrinsic monolayer MoS2 are calculated, respectively, using first-principles density functional theory based on the plane wave pseudopotential method in this paper. Calculations indicate that variations of bond length near La impurity are maximum, but they are the minimum near Nd impurity. Analysis points out that lattice distortion in doped monolayer of MoS2 is relative to the magnitude of the covalent radius of doping atom. Analysis of band structure shows that La, Ce and Nd doping can induce three, six and four energy levels, respectively, in the forbidden band of MoS2, and that the properties of impurity levels are analyzed. Rare earth doped monolayer MoS2 make change in electron distribution through the analysis of electron density difference, and especially, the existence of f electrons can induce the electron density difference to exhibit a physical image with a great contrast.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献