Two-dimensional device simulation and performance optimization of crystalline silicon selective-emitter solar cell

Author:

Jia Xiao-Jie ,Ai Bin ,Xu Xin-Xiang ,Yang Jiang-Hai ,Deng You-Jun ,Shen Hui , ,

Abstract

In this paper, device simulation and parameter optimization on crystalline silicon (c-Si) selective-emitter (SE) solar cell are performed by using PC2D two-dimensional simulator. On the basis of achieving perfect fitting to the measured I-V curve of a typical c-Si SE solar cell fabricated by screen printing phosphoric paste method, the effects of physical parameters of gridlines, base, selective emitter and back surface field layer on the optoelectronic performance of the SE solar cell are comprehensively and systematically investigated. Simulation results show that the base minority carrier lifetime, the front surface recombination velocity and the back surface recombination velocity are the three largest efficiency-affecting parameters. In the studied parameter range, when the base minority carrier lifetime rises from 50 s to 600 s, the cell efficiency increaes from 18.53% to 19.27%. Low front surface recombination velocity is the premise of making the optimization of selective emitter sheet resistance meaningful. To obtain an ideal efficiency, the back surface recombination velocity should be controlled to be under 500 cm/s. In addition, under different front surface recombination velocities, the maximum of cell efficiency is always achieved in a range of 5090 / heavily doped region sheet resistance and 110180 / lightly doped region sheet resistance. For different numbers of gridlines, when the radio of heavily doped region width to the gridline pitch equals 32%, the solar cell has the highest efficiency. Moreover, under the condition of low area radio of bas bar, increasing bus bar number appropriately can improve the efficiency. The efficiency of p-type SE solar cell reaches 20.45% after optimization.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3