Shear test and physical mechanism analysis on size effect of granular media

Author:

Fang Ying-Guang , ,

Abstract

Shear test samples of different grain sizes are prepared by using mineral particles of soil, and a series of tests of quick direct shear and tri-axial shear are performed to study the size effect of granular media. Deformation curves and shear stress strength are given of test samples with particles of different size and volume fraction. On the basis of the ratio of micro-acting forces between particles to gravity and the cell element model, physical mechanism of grain size effect is, for the first time as far as we know, explained on the micro-level and mecro-level respectively. Test results show that the deformation characteristic of granular media is enhanced and its shear stress strength increases with increasing volume fraction and decreasing of particle size, and the effect of volume fraction on the deformation characteristics and strength is more notable than that of grain size. According to mechanism analysis on size effect, parameter ratio of micro-acting forces to gravity is suggested to assess aggregation and friction effects of particles in the media, and mecro-mechanism is interpreted as strain gradient and micro-cracks of deformation coordination leading to grain size effect. The cell element model presented in this paper can greatly reduce the degrees of freedom of granular media and provides an available way for calculation modeling in industry and engineering design.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference21 articles.

1. Conway S L, Shinbrot T, Glasser B J 2004 Nature 431 433

2. Zhou J, Long S, Wang M Q, Dinsmore A D 2006 Science 312 1631

3. Corwin E I, Jaeger H M, Nagel S R 2005 Nature 435 1075

4. Zuriguel I, Mullin T 2008 Proc. R. Soc. A 8 99

5. Sun Q C, Wang G Q 2009 An introduction to the mechanics of granular matter (Beijing: Science press) p1 (in Chinese) [孙其诚, 王光谦 2009 颗粒物质力学导论(北京: 科学出版) 第1页]

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3