Analysis and prediction of complex dynamical characteristics of short-term traffic flow

Author:

Zhang Hong-Bin ,Sun Xiao-Duan ,He Yu-Long , ,

Abstract

In order to reveal the internal dynamic property of short-term traffic flow, the nonlinear analysis method is used to identify the chaotic property of traffic flow which is the basis for the prediction of the traffic flow time series. Traffic flow time series is reconstructed in phase-space based on chaos theory. The embedding dimension and delay time are first calculated via the C-C method. The correlative dimension of attractor is then calculated with the Grassberger-Procaccia method. The largest Lyapunov exponent of traffic flow set is calculated on the basis of the improved small data set method to verify the presence of the chaos in traffic flow time series. A novel multi-step adaptive prediction method is proposed to solve the problem of adjusting the filter parameters of the chaos local adaptive prediction method during traffic flow multi-step prediction. The traffic flow time series are found to have chaotic properties in different statistical scales of 2, 4, and 5 min and show that the improved small data set method can accurately evaluate the chaotic property for traffic flow time series, and that the multi-step adaptive prediction method is capable of effectively predicting its fluctuation, which provides a useful reference for traffic guidance and control.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference20 articles.

1. Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Physica D 16 285

2. Barana G, Tsuda I 1993 Phys. Lett. A 175 421

3. Briggs K 1990 Phys. Lett. A 151 27

4. Rosenstein M T, Collins J, Deluca C J 1993 Physica D 65 117

5. Chen Z, Liang P 2000 J. Guizhou Normal Univ. (Natural Science) 18 58(in Chinese) [陈琢, 梁蓓 2000 贵阳师范大学学报 (自然科学版) 18 58]

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3