Blind source separation of chaotic signals in wireless sensor networks

Author:

Huang Jin-Wang ,Feng Jiu-Chao ,Lü Shan-Xiang ,

Abstract

Chaotic signal is essentially a nonlinear and non-Gaussian signal, which involves signal quantization when used in wireless sensor networks (WSNs). It makes the blind source separation of chaotic signal in WSNs more difficult to address. To solve the problem, we propose a new source separation algorithm based on cubature Kalman particle filter (CPF) in this paper. First the probability density function of the observed signal is derived and the optimal quantization is used; this can achieve the optimal quantization of signal under the limited budget of quantization bits. After that, the algorithm uses cubature Kalman filter (CKF) to generate the important proposal distribution of the particle filter (PF), integrating the latest observation and improving the approximation to the system posterior distribution, which will improve the performance of the signal separation. Simulation results show that the algorithm can separate mixed chaotic signal effectively, it is superior over the unscented Kalman particle filter (UPF) counterpart in accuracy and computation overhead. The running time is 88.77% compared to the UPF counterpart.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3