Ionization parameters of high power microwave flashover on dielectric window surface calculated by particle-in-cell simulation for fluid modeling

Author:

Dong Ye ,Dong Zhi-Wei ,Zhou Qian-Hong ,Yang Wen-Yuan ,Zhou Hai-Jing ,

Abstract

The particle-in-cell (PIC) simulation method is used to get the reliable ionization parameters of high power microwave flashover and breakdown on dielectric surface for fluid modeling. Firstly, the PIC method is presented briefly, including dynamic equations, secondary emission and Monte-Carlo collision (MCC) between electron and gas atom. Secondary, the fluid global model (GM) is introduced including continuity and energy conservation functions. Finally, by using a 1D3V PIC-MCC code programmed by the authors, the ionization parameters are calculated under different microwave electric-field values, microwave frequencies, gas types and pressures for fluid modeling, including ionization frequency, breakdown delay time, average electron energy, electron energy distribution function (EEDF). The numerical results could be concluded as follows. Average electron energy is unrelated to EEDF type. At middle and low gas pressures, electron energy satisfies Maxwell distribution, and ionization parameters are unrelated to EEDF type. At middle and high gas pressures, ionization parameter is related to EEDF type, and the relevant coefficient X of EEDF tends to be of high older. Different gases have different EEDF types, and the relevant coefficient X of EEDF should be corrected by PIC simulation. The value of X is also related to microwave electric-field value and frequency, and its value increases with the increase of microwave electric-field value and the decrease of microwave frequency. In a fixed range (microwave electric-field value below 7 MV/m, and microwave frequency below 40 GHz), at middle and low gas pressures, the average electron energy increases with the increase of electric-field value and the decrease of microwave frequency rapidly, and the ionization frequency increases and then decreases with the increase of microwave electric-field value and frequency respectively; at high gas pressure, the average electron energy increases with the increase of electric-field value slowly, the ionization frequency increases with the increase of electric-field value, and the average electron energy and ionization frequency are unrelated to microwave frequency.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3