Experimental investigation of dredging thermal protection system of hypersonic vehicle leading edge

Author:

Sun Jian ,Liu Wei-Qiang , ,

Abstract

According to the characteristics of dredging thermal protection system (DTPS) of hypersonic vehicle leading edge, both the structure of embedded high conductivity materials and that of integrative plate of heat pipe are designed to complete the two kinds of comparative experiments so as to prove the feasibility of the DTPS. As a source of radiation heating, the spherical short arc xenon lamp is simulated for aerodynamic heating. The pure steel leading edge, the embedded copper leading edge, the plate pure steel leading edge, and the integrative plate for heat pipe leading edge are heated respectively. Temperature variations of stagnation point region and tail fins are measured. Experimental results show that DTPS of the embedded high conductivity materials can reduce the temperature of stagnation point region and increase the temperature of the tail fins. It also can achieve the aim of thermal protection of leading edge. The DTPS of integrative plate heat pipe whose working fluid is pure water also can protect the leading edge under the condition of low heat flux. At the huge pressure of vapor, DTPS of the integrative plate of heat pipe may be broken at high heat flux. It is shown that the working fluid of heat pipe can play a key role in the application range for the thermal protection effect.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3