Chirp spread spectrum of orthogonal frequency division multiplexing underwater acoustic communication system based on multi-path diversity receive

Author:

Wang Yi-Lin ,Ma Shi-Long ,Liang Guo-Long ,Fan Zhan ,

Abstract

Aiming at the problem of traditional orthogonal frequency division multiplexing (OFDM) communication system performance degradation when the channel is subjected to complex multi-path and frequency-selective deeply fading, a chirp spread spectrum (CSS) of OFDM underwater acoustic communication system called CSS-OFDM is proposed in this paper. The CSS-OFDM system spreads the spectrum of traditional OFDM signals, whose sub-carriers are modulated into the same chirp rate, different center frequency orthogonal chirp signals with overlapped bandwidth. Dispreading after underwater acoustic coherent multi-path channel, at the receiving end, the multi-path signals will be expanded from each other in the frequency domain. Applying virtual time reversal mirror technology, the energies of the multi-path signals are focused to complete the multi-path channel diversity receiving. The system performance is improved not only by suppressing the frequency selective fading, but also taking full advantage of multi-path energy of the channel. The effectiveness and reliability of this system are verified through a number of simulations and lake trials.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3