Application of the multi-parameters error model in cyclone wind retrieval with scatterometer data

Author:

Zhong Jian ,Fei Jian-Fang ,Huang Si-Xun ,Huang Xiao-Gang ,Cheng Xiao-Ping ,

Abstract

Combined with the multiple solution scheme (MSS) and the rain considered Geophysical model function (GMF+Rain), the two-dimensional variational (2DVAR) ambiguity removal technique is applied to the cyclone wind retrieval under rain condition with QuikSCAT scatterometer data. With the GMF+Rain model, the retrieved wind speed is effectively improved, but large wind direction error still exists when the background is in large error. In this paper, a changeable multi-parameter error model is introduced in the 2DVAR to reduce the wind direction error, and the sensitivity experiments of 2DVAR to its error model parameters are studied with cyclone Yagi QuikSCAT data, to choose the best parameters setting for cyclone wind retrieval with theoretical explanation. Numerical results show that 2DVAR is more effective in wind direction ambiguity removal with the proposed multi-parameter error model when the gross error probability in the multi-parameter error model is set to zero in comparison of the standard setting. The influence of the background is decreased with increasing backround error variance, decreasing the background error correlation length, or decreasing the gross error probabilities in multi-parameter error model.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference17 articles.

1. Marcos P A 2003 Ph.D. Dissertation (Barcelona: University of Barcelona)

2. Zhong J, Huang S X, Zhang L 2010 Scientia Meteorologica Sinica 30 137 (in Chinese) [钟剑, 黄思训, 张亮 2010 气象科学 30 137]

3. Zhong J, Huang S X, Du H D, Zhang L 2011 Chin. Phys. B 20 034301

4. Tournadre J, Quilfen Y 2003 Geophys Res: C-Oceans 108 1

5. Yueh S H, Stiles B W, Liu W 2003 IEEE Trans. Geosci. Remote Sensing 41 2616

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3