Novel microwave power sige heterojunction bipolar transistor with high thermal stability over a wide temperature range

Author:

Lu Dong ,Jin Dong-Yue ,Zhang Wan-Rong ,Zhang Yu-Jie ,Fu Qiang ,Hu Rui-Xin ,Gao Dong ,Zhang Qing-Yuan ,Huo Wen-Juan ,Zhou Meng-Long ,Shao Xiang-Peng ,

Abstract

Thermal instability of power SiGe heterojunction bipolar transistor (HBT) at high current over a wide temperature range restricts the applications of the device in RF and microwave circuits. In order to improve the thermal instability, the influences of Ge profile in a base region on the electrical and thermal characteristics of microwave power SiGe HBT are studied with the aid of the model of multi-finger power SiGe HBT established by SILVACO TCAD. It is shown that for the HBT with graded step Ge profile, a higher cut-off frequency fT can be achieved due to the accelerating electric field caused by the graded step Ge concentration in the base region when compared with the device with uniform Ge profile. The influences of temperature on current gain β and fT are weakened, which avoids the drift of electrical characteristics over a wide temperature range. Although the temperature of device is lowered, the temperature of each emitter finger is still non-uniform. Considering the difference in heat dissipation among emitter fingers, a new device with non-uniform emitter finger spacing in layout and a graded step Ge profile in base region is designed. For the new device, the uniformity of temperature among emitter fingers is achieved, higher fT is kept, β and fT are less sensitive to temperature variation. Hence the thermal instability is obviously improved compared with the device with uniform emitter finger spacing and uniform Ge profile in base region, indicating the superiority of the new device at high current over a wide temperature range.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3