Progress in the study on finite time thermodynamic optimization for direct and reverse two-heat-reservoir thermodynamic cycles

Author:

Li Jun ,Chen Lin-Gen ,Ge Yan-Lin ,Sun Feng-Rui ,

Abstract

The results obtained by using finite time thermodynamics (FTT) are universal and have become one of important foundations of thermo-physics. A large number of researches have been carried out in the performance optimizations and optimal configurations of single-and multi-stage two-heat-reservoir direct and inverse thermodynamic cycles by using FTT. The obtained new results have more important practical significance for engineering design and optimization than those obtained by using classical thermodynamics. This paper reviews the new advances of the optimal performances and optimal configurations of single and multi-stage two-heat-reservoir direct and inverse thermodynamic cycles following different heat transfer laws, including the new advances of the optimal performances of endoreversible and irreversible Carnot heat engine, Carnot refrigerator and Carnot heat pump cycles under different heat transfer laws, and the new advances of the optimal configurations of two-heat-reservoir heat engine, refrigerator and heat pump cycles, as well as multi-stage complex thermodynamic cycles with different heat transfer laws.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference513 articles.

1. Andresen B Finite-Time Thermodynamics 1983 (University of Copenhagen: Physics Laboratory II) pp1-149

2. Chen L G, Wu C, Sun F R 1999 J. Non-Equilib. Thermodyn. 24 327

3. Berry R S, Kazakov V A, Sieniutycz S, Szwast Z, Tsirlin A M 1999 Thermodynamic Optimization of Finite Time Processes (Chichester: Wiley) pp1-490

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3