Surface microstructure and stress characteristics in pure zirconium after high current pulsed electron beam irradiation

Author:

Cai Jie ,Ji Le ,Yang Sheng-Zhi ,Zhang Zai-Qiang ,Liu Shi-Chao ,Li Yan ,Wang Xiao-Tong ,Guan Qing-Feng ,

Abstract

High-current pulsed electron beam (HCPEB) technique was applied to irradiate the samples of pure zirconium. The microstructures and defects of the irradiated surface are investigated by using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). XRD results show that the high value of stress (GPa order) is introduced within the irradiated surface layer, while the formation of {0002}, {1012}, {1120} and {1013} textures are present after HCPEB irradiation. Microstructure observations demonstrate that the surface craters are rarer, and almost no craters are present after multiple pulses HCPEB irradiation, which is evidently different from the case of other metal materials irradiated by HCPEB. Moreover, a large number of ultrafine grains are formed on the irradiated surface. Martensitic transformation occurs and severe plastic deformation is also induced due to the superfast melting and cooling processes. After one- pulse irradiation, the dislocations are the dominant defects, while the amount of twins is less. After five pulses, the dislocation density and the number of deformation twins increase evidently, whereas dense deformation twins are the central microstructures after ten-pulse irradiation, coupled with the appearance of secondary twins occasionally. The formation of these deformed structures results in a significant effect both on the evolution of surface textures and on grain refinement. It is suggested that HCPEB technique provides an impactful approach for hardening of zirconium and zirconium alloys.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference34 articles.

1. Li Z K, Zhou L, Li P Z, Zhang J J, Xue X Y, Song Q Z 1999 Rare Metal Mat. Eng. 28 380 (in Chinese) [李中奎, 周廉, 李佩志, 张建军, 薛祥义, 宋启忠 1999 稀有金属材料与工程 28 380]

2. Chen X W, Bai X D, Xue X Y 2003 Rare Metal Mat. Eng. 32 321 (in Chinese) [陈小文, 白新德, 薛祥义 2003 稀有金属材料与工程 32 321]

3. Peng D Q, Bai X D, Chen B S 2005 Acta. Metall. Sin. 41 185 (in Chinese) [彭德全, 白新德, 陈宝山 2005 金属学报 41 185]

4. Lee S, Park C, Lim Y, Kwon H 2003 J. Nucl. Mater. 321 177

5. Kim H G, Jeong Y H, Kim T H 2001 J. Nucl. Mater. 326125

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3