Thickness dependence of critical current density in MgB2 films fabricated by hybrid physical-chemical vapor deposition

Author:

Chen Yi-Ling ,Zhang Chen ,He Fa ,Wang Da ,Wang Yue ,Feng Qing-Rong , ,

Abstract

MgB2 superconducting films with a thickness of 10 nm to 8 μ have been prepared on SiC substrates by hybrid physical-chemical vapor deposition (HPCVD). The study on Tc and Jc shows that as the film grows thicker, Tc increases and then keeps stable, which Jc increases at first, and then drops dramatically. We get the maximum Tc at 41.4 K and Jc at 2.3× 108 A·cm-2. This also shows that we can use the method of HPCVD to prepare high-quality of clean MgB2 film. And its thickness can be from 10nm ultrathin films and 100 nm thin films up to 8 μm thick film. It is the first time so far as we know that Tc and Jc are studied in this range of thickness. This will lead to a complete and systematical understanding of the superconducting MgB2 films. And it is also important and practical to choose the thickness when preparing MgB2 films.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3