Fabrication of cylindrical opals and inverse opals and their optical properties

Author:

Chen Wei ,Wang Ming ,Ni Hai-Bin ,

Abstract

Hollow and solid cylindrical opals and inverse opals have been made by the self-assembly method in a capillary. The mechanism as well as the assembly process of monodispersed microspheres self-assembly in a capillary has been investigated. By the vertical self-assembly method, hollow cylindrical polystyrene opals and silica inverse opals of different radii have been made in capillaries; whereas cylindrical solid opals and inverse opals have been prepared under the interactions of gravity sedimentation, evaporation induced micro-flow, liquid surface tension and capillary tension. The growth process of producing solid photonic crystals in capillaries have been described and discussed. By scanning electron microscope, we characterize the internal structure of the samples and with spectrometer we test the reflection spectra of these films. Results show that the substrate curvature radius and microsphere size are the main factors that affect the quality of hollow cylindrical opal and inverse opal films while microsphere size has influence on the internal structure of solid cylindrical opals and inverse opals.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3