Design and simulation of W-band BWO based on slotted single-grating and cylindrical beam

Author:

Xie Wen-Qiu ,Wang Zi-Cheng ,Luo Ji-Run ,Liu Qing-Lun ,Dong Fang , ,

Abstract

A slotted rectangular single-grating with a cylindrical electron beam was proposed as the beam-wave interaction circuit of a W-band backward wave oscillator (BWO). Analysis on the slow-wave characteristics of the structure was done utilizing three-dimensional electromagnetic field simulation software CST-MWS. Results are as follows: The new structure can have a much larger coupling impedance than traditional one; the bandwidth of the fundamental mode can be broadened and the fundamental mode is unlikely to compete with the high-order mode. The loss caused by the skin effect is reduced. The structure was applied to design a W-band backward wave oscillator whose band center is 94 GHz. A simple slow-wave transition part, and the output coupler and terminal matching attenuator were designed, the parameters of which were optimized to obtain good signal transmission. Using CST-PS’s PIC solver, a three-dimensional large-signal particle simulation was done. After setting a suitable electron current and other parameters, watts scale peak output power was obtained within a wide frequency band by adjusting the working voltage, and the electronic efficiency in the band was greater than 1%.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3