First-principles study of structural stability and electronic properties of tetragonal and orthorhombic as well as monoclinic K0.5Na0.5NbO3

Author:

Liu Shi-Yu ,Yu Da-Shu ,Lü Yue-Kai ,Li De-Jun ,Cao Mao-Sheng , ,

Abstract

The energetic stability, structural and electronic properties of tetragonal, orthorhombic, as well as monoclinic K0.5Na0.5NbO3 are systematically studied using first-principles supercell model and virtual crystal approximation based on density functional theory with local density approximation and generalized gradient approximation. Our calculated results show that the total energy differences among the three K0.5Na0.5NbO3 phases are small, which are well consistent with the easy phase equilibrium at the phase boundary in the experiments. Furthermore, we also find that the total energy of the monoclinic phase is lower than that of the other two phases, which suggests that the monoclinic structure is energetically more stable than the others. Moreover, the calculated structural parameters are in good agreement with experimental values. In addition, the electronic structure results show that the bonding interaction in the monoclinic structure is stronger than that in the other structures, also indicating that the monoclinic structure is the most stable one.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference30 articles.

1. Cohen R E 1992 Nature (London) 358 136

2. Lin H B, Cao M S, Yuan J, Wang D W, Zhao Q L, Wang F C 2008 Chin. Phys. B 17 4323

3. Wang D W, Zhang D Q, Yuan J, Zhao Q L, Liu H M, Wang Z Y, Cao M S 2009 Chin. Phys. B 18 2596

4. Wang D W, Jin H B, Yuan J, Wen B L, Zhao Q L, Zhang D Q, Cao M S 2010 Chin. Phys. Lett. 27 047701

5. Wang D W, Cao M S, Yuan J, Zhao Q L, Li H B, Zhang D Q, Agathopoulos S 2011 J. Am. Ceram. Soc. 94 647

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3