SPFGO effects on the electroluminescence and photovoltaic response in conjugated polymers

Author:

He Jia-Qi ,He Da-Wei ,Wang Yong-Sheng ,Liu Zhi-Yong ,

Abstract

This paper studies the influence of poly [2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEH-PPV) on solution-processable functionalized graphene oxide (SPFGO) composite film-based organic light emitting Diode (OLED) and organic photovoltaic (OPV) performance for different SPFGO concentrations. There is a strong quenching of photoluminescence when MEH-PPV is doped with SPFGO, which means there is a strong transfer of electron and energy between MEH-PPV and SPFGO. Doping SPFGO in MEH-PPV can improve the performance of OLED at low concentration, and the performance will be the best when the concentration of SPFGO is 0.2%; however, the performance of OPV remains unchanged. The performance of OPV could be improved by high doping concentration of SPFGO, the performance will be the best when the concentration of SPFGO reaches 15%, and there is a quenching in the electroluminescence (EL) of OLED. As shown in the statistics of the experiment, SPFGO can increase the injectivity of carriers, and when the SPFGO is of low concentration, it can increase the luminous intensity of OLED and reduce the threshold voltage. SPFGO can act as an electron acceptor, and when the concentration of SPFGO is high, the exciton dissociation at MEH-PPV/SPFGO interface can be improved, and the performance of OPV can be also improved. Therefore, the concentration of SPFGO should be the main factor in adjusting the performance of OLED and OPV separately.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3