Monte Carlo simulations of microstructure and texture evolution during annealing of a two-phase titanium alloy

Author:

Yang Liang ,Wei Cheng-Yang ,Lei Li-Ming ,Li Zhen-Xi ,Li Sai-Yi , , , , ,

Abstract

Nucleation and grain growth are important phenomena during static recrystallization of metallic materials and both processes have significant influences on the material properties. The Monte Carlo (MC) method has been widely used to simulate static recrystallization behavior during annealing of metallic materials. In this study, an MC model for static recrystallization of two-phase alloys is proposed by extending an existing MC model, through the introduction of the nucleation stage to account for the grain growth by both consuming deformed grains and competing with other recrystallized grains. The two-phase MC model is used to simulate the evolution of microstructure and texture during annealing of a TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) titanium alloy, accounting for initial grain morphology, phase compositions, crystallographic orientations, and relative values of strain stored energy determined by electron back-scattered diffraction. The results show that the model can reproduce satisfactorily the recrystallization and grain growth behavior in annealing. Compared with the β phase, the α phase depicts a lower recrystallization rate but a higher grain growth rate: the former difference can be mainly attributed to the lower strain stored energy in the α phase before annealing, whereas the latter suggests that the grain growth in the system is significantly influenced by the grain morphology, distribution of grains, and relative volume fractions of the two phases in the initial condition. Due to the influence of heterogeneous nucleation accounted for in the model, the simulated recrystallization rate deviates considerably from that described by the Johnson-Mehl-Avrami-Kolmogorov equation. The simulation also indicates that for both phases the textures strengthen with little changes in their basic features during annealing.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3