Design, fabrication, and experimental demonstration of a diffractive optical element with long depth of field for nanoscale three-dimensional multi-molecule tracking

Author:

Yu Bin ,Li Heng ,Chen Dan-Ni ,Niu Han-Ben , ,

Abstract

The development of real-time single-molecule detection and tracking technology in time and space for multiple bio-molecules in intact cells has important significance for the study on molecular behaviors in life processes. However, limited depth of field is the main drawback of conventional microscopy that prevents observation and tracking of multiple molecules in intact cells. Based on the principle of wavefront coding, the design and fabrication of a novel diffractive optical element (DOE) which combines a distorted diffraction grating with a double-helix point spread function (PSF) phase plate so that it can simultaneously perform multi-plane imaging with double-helix PSF and realize an extended depth of field is presented. Experiments have been carried out on a self-built microscopic system based on the novel DOE, showing that a depth of field can be up to 12 μm. Experimental results are in good agreement with the theoretical predictions, thus proving the feasibility of this method.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3