Effect of wall friction on subharmonic bifurcations of impact in vertically vibrated granular beds

Author:

Han Hong ,Jiang Ze-Hui ,Li Xiao-Ran ,Lü Jing , Zhang Rui ,Ren Jie-Ji ,

Abstract

Granular materials consist of a large number of discrete solid particles. When subjected to external vibrations, they exhibit various intricate dynamical behaviors, Which usually depend in a complicated way on many physical factors, such as air dragging, friction from the container wall and so forth. In this work, vertical vibrations are applied to a bed of stainless-steel spheres contained in a glass tube, and the subharmonic bifurcations of impact of particles on the container bottom are investigated. To eliminate the effects of air dragging, we evacuate the container or perforate the container bottom to make it quite permeable to the air. Experiments performed in such containers reveal that the impact bifurcations are controlled solely by the normalized vibration acceleration, but independent of the particle size, the filling height of particles, and the frequency of forced vibration. The sliding friction from the container wall is treated as a constant one with the direction opposite to the velocity relative to the container wall. By involving this damping term into the completely inelastic bouncing ball model, an explanation for the experimental results is made. Simulations on the averaged experimental bifurcation points indicate that the magnitude of wall friction is about 10% of the total weight of the particles.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robustness measurement of multiplex networks based on multiplex motifs;Physica D: Nonlinear Phenomena;2024-01

2. Information Connections among Multiple Investors: Evolutionary Local Patterns Revealed by Motifs;Scientific Reports;2017-10-25

3. Motifs in weighted networks and their Hirsch subgraphs;Malaysian Journal of Library & Information Science;2016-12-01

4. The connectivity measurement in complex directed networks by motif structure;International Journal of Sensor Networks;2016

5. The influence of air on period doubling motion in vertically vibrated grains beds;Physica A: Statistical Mechanics and its Applications;2014-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3