Author:
Wu Bao-Jia ,Li Yan ,Peng Gang ,Gao Chun-Xiao , ,
Abstract
Electrical resistivity and Hall-effect in InSe under high pressure are accurately measured in situ. The measurement results of electrical resistivity and the temperature dependence of electrical resistivity show that InSe undergoes semiconductor-to-metal transition at 5-6 GPa and transforms from rhombohedral layered phase P1 (InSe-I) to metallic rocksalt cubic phase P3 (InSe-III) at 12 GPa. Certainly, the pressure-induced metallization of InSe results from the pressure-induced structural phase transition. In addition, Hall-effect measurements display the carrier transport behavior of InSe under pressure, which indicates that InSe undergoes a carrier-type inversion around 6.6 GPa and the increases of the carrier concentration is the dominant factor producing the decrease of the resistivity after 9.9 GPa.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy