1/f noise characterization gamma irradiation of GaN-based blue light-emitting diode

Author:

Liu Yu-An ,Zhuang Yi-Qi ,Du Lei ,Su Ya-Hui , ,

Abstract

The electrical model that ionizing radiation reduces the effective power output of GaN-based blue light-emitting diode is proposed by investigating the light/dark current generation mechanism in active region of GaN-based blue light emitting diode device under ionizing irradiation. The model that the ionizing radiation increases the 1/f noise of GaN-based blue light-emitting diode device is proposed by studying the 1/f noise mechanism of the active region of GaN-based blue light-emitting diode device under exposure to ionizing radiation. In the small injection region (I1 A), the space charge region and the recombination current increase with irradiation dose increasing. Meanwhile, with the increase of the ionizing-irradiation-generated defects, the 1/f noise amplitude increases. In the large injection region (I1 mA), due to the dominant influence of the series resistance, the surface recombination velocity and current increases with irradiation dose increasing. Meanwhile, with the increase of ionizing-irradiation- generated defects, the 1/f noise amplitude increases. The I-V and 1/f noise test results before and after irradiation are in good agreement with theoretical results. In the middle injection region (1 A I 510-5 A), due to the competition between mobility fluctuation caused by energetic carrier scattering and the carrier number fluctuation caused by the newly irradiation-generated defects, as the radiation dose increases, 1/f noise has no significant changes in the frequency domain. However, through the 1/f noise time domain multiscale entropy complexity analysis, a conclusion can be drawn that with the increase of radiation dose, the 1/f noise domain multi-scale entropy becomes more complex. 1/f noise amplitude ultimately proves to be sensitive to reflect the reliability of GaN-based blue light-emitting diode ionizing irradiation in the case of small injection and large injection. The greater the noise amplitude, the higher the irradiation induction trap is, and the greater the generation-recombination current related to the dark current, the smaller the photocurrent related to the diffusion current is, so that the luminous efficiency of the device, the optical output power, and other performance parameters decrease, thus affecting the reliability of the device and resulting in the more failure devices. 1/f noise time domain multiscale entropy complexity can reflecte ionizing irradiation reliability of GaN-based blue light emitting diodes sensitively in the middle injection region.The more the multiscale entropy complexity, the bigger the irradiation induction generation-recombination current is, and the worse the reliability of the device is. The present study provides a method of characterizing the GaN-based blue light-emitting diode ionizing irradiation reliability according to 1/f noise.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3