Theoretical research and experimental verification for ocean surface wind vector retrieval from airborne C-band fully polarimetric SAR

Author:

Zhao Xian-Bin ,Yan Wei ,Kong Yi ,Han Ding ,Liu Wen-Jun ,

Abstract

Ocean surface wind vector retrieval research on airborne fully polarimetric SAR (synthetic aperture radar) is of great significance for wind vector sounding under complex weather conditions near the coast. Starting from polarization scattering theory, we designed an ocean surface wind vector retrieval scheme for fully polarimetric SAR, by analyzing the relationship between fully polarimetric SAR sounding data and ocean surface wind vector. According to the high mobility and fully polarimetric two sounding characteristics of airborne SAR, firstly, we presented an ocean surface wind vector retrieval method based on maximum likelihood estimates for VV-polarized sounding data, and designed the flight experiment scheme. Secondly, we proposed an ocean surface wind vector retrieval method for VH-polarized sounding data, retrieved wind speed by VH-polarized ocean surface scattering model from optimum fitting with constraints, and calculated wind direction by CMOD5 geophysical model function. Using typhoon ''Haikui'' edge sounding data from airborne fully polarimetric SAR, we carried out the ocean surface wind vector retrieval experimental research. Results show that two wind vector retrieval methods can retrieve ocean surface wind vector under complex weather conditions without auxiliary information. Wind direction and wind speed retrieval root mean square errors of the former are 18.0°, 1.8 m/s, wind direction and wind speed retrieval root mean square errors of the latter are 9.3°, 1.2 m/s, and the accuracy of the latter is better than that of the former. The VH-polarized normalized radar cross section is more suitable for ocean surface wind vector retrieval under complex weather conditions, because it is independent of wind direction and radar incidence angle but has a linear relationship with respect to wind speed.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3