Dependence of silica sol properties on synthesis situation studied by SAXS

Author:

Xu Yao ,Wu Dong ,Sun Yu-Han ,Li Zhi-Hong ,Dong Bao-Zhong ,Wu Zhong-Hua ,

Abstract

The properties of silica sol, such as the interface characteristics and microstr ucture, were comparatively studied by small angle x-ray scattering (SAXS) assis ted by dynamic light scattering. Four synthesis routes were adopted to relate th e properties of silica sol with the synthesis situation. Very big difference of SAXS results was found between the base-catalyzed and the acid-catalyzed silic a sols with ethanol used as solvent. Under the acid-catalysis of low molecule-w eight organic acid, not only were polysiloxane macromolecules obtained, particle suspension of silica was also produced with complicated inner structures of pa rticles. With ethanol or water as solvent, it was found that the silica particl e would become more irregular in morphology with more polarity of solvent. The formation of Si-O tetrahedron was more difficult in the acidolysis of tetraetho xysilane by formic acid than in the other hydrolysis routes. An interesting co- existing of positive deviation and negative deviation from Porod’s law was foun d in the silica sol with water solvent, and a detailed explanation has been giv en.Many nano-scaled structural difference among these different synthesis situa tions were revealed, which was difficult to be recognized by the experimental m ethods other than SAXS.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3